34 research outputs found

    A curvature-enhanced random walker segmentation method for detailed capture of 3D cell surface Membranes

    Get PDF
    High-resolution 3D microscopy is a fast advancing field and requires new techniques in image analysis to handle these new datasets. In this work, we focus on detailed 3D segmentation of Dictyostelium cells undergoing macropinocytosis captured on an iSPIM microscope. We propose a novel random walker-based method with a curvature-based enhancement term, with the aim of capturing fine protrusions, such as filopodia and deep invaginations, such as macropinocytotic cups, on the cell surface. We tested our method on both real and synthetic 3D image volumes, demonstrating that the inclusion of the curvature enhancement term can improve the segmentation of the aforementioned features. We show that our method performs better than other state of the art segmentation methods in 3D images of Dictyostelium cells, and performs competitively against CNN-based methods in two Cell Tracking Challenge datasets, demonstrating the ability to obtain accurate segmentations without the requirement of large training datasets. We also present an automated seeding method for microscopy data, which, combined with the curvature-enhanced random walker method, enables the segmentation of large time series with minimal input from the experimenter

    Generative adversarial networks for augmenting training data of microscopic cell images

    Get PDF
    Generative adversarial networks (GANs) have recently been successfully used to create realistic synthetic microscopy cell images in 2D and predict intermediate cell stages. In the current paper we highlight that GANs can not only be used for creating synthetic cell images optimized for different fluorescent molecular labels, but that by using GANs for augmentation of training data involving scaling or other transformations the inherent length scale of biological structures is retained. In addition, GANs make it possible to create synthetic cells with specific shape features, which can be used, for example, to validate different methods for feature extraction. Here, we apply GANs to create 2D distributions of fluorescent markers for F-actin in the cell cortex of Dictyostelium cells (ABD), a membrane receptor (cAR1), and a cortex-membrane linker protein (TalA). The recent more widespread use of 3D lightsheet microscopy, where obtaining sufficient training data is considerably more difficult than in 2D, creates significant demand for novel approaches to data augmentation. We show that it is possible to directly generate synthetic 3D cell images using GANs, but limitations are excessive training times, dependence on high-quality segmentations of 3D images, and that the number of z-slices cannot be freely adjusted without retraining the network. We demonstrate that in the case of molecular labels that are highly correlated with cell shape, like F-actin in our example, 2D GANs can be used efficiently to create pseudo-3D synthetic cell data from individually generated 2D slices. Because high quality segmented 2D cell data are more readily available, this is an attractive alternative to using less efficient 3D networks

    Mathematical modelling in cell migration : tackling biochemistry in changing geometries

    Get PDF
    Directed cell migration poses a rich set of theoretical challenges. Broadly, these are concerned with 1) how cells sense external signal gradients and adapt; 2) how actin polymerisation is localised to drive the leading cell edge and Myosin-II molecular motors retract the cell rear; and 3) how the combined action of cellular forces and cell adhesion results in cell shape changes and net migration. Reaction-diffusion models for biological pattern formation going back to Turing have long been used to explain generic principles of gradient sensing and cell polarisation in simple, static geometries like a circle. In this minireview we focus on recent research which aims at coupling the biochemistry with cellular mechanics and modelling cell shape changes. In particular we want to contrast two principal modelling approaches, 1) interface tracking where the cell membrane, interfacing cell interior and exterior, is explicitly represented by a set of moving points in 2D or 3D space, and 2) interface capturing. In interface capturing the membrane is implicitly modelled, analogously to a level line in a hilly landscape whose topology changes according to forces acting on the membrane. With the increased availability of high-quality 3D microscopy data of complex cell shapes, such methods will become increasingly important in data-driven, image-based modelling to better understand the mechanochemistry underpinning cell motion

    MiCellAnnGELo: Annotate microscopy time series of complex cell surfaces with 3D Virtual Reality

    Get PDF
    Summary: Advances in 3D live cell microscopy are enabling high-resolution capture of previously unobserved processes. Unleashing the power of modern machine learning methods to fully benefit from these technologies is, however, frustrated by the difficulty of manually annotating 3D training data. MiCellAnnGELo virtual reality software offers an immersive environment for viewing and interacting with 4D microscopy data, including efficient tools for annotation. We present tools for labelling cell surfaces with a wide range of applications, including cell motility, endocytosis, and transmembrane signalling. Availability and implementation: MiCellAnnGELo employs the cross platform (Mac/Unix/Windows) Unity game engine and is available under the MIT licence at https://github.com/CellDynamics/MiCellAnnGELo.git, together with sample data and demonstration movies. MiCellAnnGELo can be run in desktop mode on a 2D screen or in 3D using a standard VR headset with compatible GPU.Comment: For associated code and sample data, see https://github.com/CellDynamics/MiCellAnnGELo.gi

    Conserved cis-regulatory modules control robustness in Msx1 expression at single cell resolution

    Get PDF
    The process of transcription is highly stochastic leading to cell-to-cell variations and noise in gene expression levels. However, key essential genes have to be precisely expressed at the correct amount and time to ensure proper cellular development and function. Studies in yeast and bacterial systems have shown that gene expression noise decreases as mean expression levels increase, a relationship that is controlled by promoter DNA sequence. However, the function of distal cis-regulatory modules (CRMs), an evolutionary novelty of metazoans, in controlling transcriptional robustness and variability is poorly understood. In this study, we used live cell imaging of transfected reporters combined with a mathematical modelling and statistical inference scheme to quantify the function of conserved Msx1 CRMs and promoters in modulating single-cell real-time transcription rates in C2C12 mouse myoblasts. The results show that the mean expression–noise relationship is solely promoter controlled for this key pluripotency regulator. In addition, we demonstrate that CRMs modulate single-cell basal promoter rate distributions in a graded manner across a population of cells. This extends the rheostatic model of CRM action to provide a more detailed understanding of CRM function at single-cell resolution. We also identify a novel CRM transcriptional filter function that acts to reduce intracellular variability in transcription rates and show that this can be phylogenetically separable from rate modulating CRM activities. These results are important for understanding how the expression of key vertebrate developmental transcription factors is precisely controlled both within and between individual cells

    Formation and closure of macropinocytic cups in Dictyostelium

    Get PDF
    Macropinocytosis is a conserved endocytic process by which cells engulf droplets of medium into micron-sized vesicles. We use light-sheet microscopy to define an underlying set of principles by which macropinocytic cups are shaped and closed in Dictyostelium amoebae. Cups form around domains of PIP3 stretching almost to their lip and are supported by a specialized F-actin scaffold from lip to base. They are shaped by a ring of actin polymerization created by recruiting Scar/WAVE and Arp2/3 around PIP3 domains, but how cups evolve over time to close and form a vesicle is unknown. Custom 3D analysis shows that PIP3 domains expand from small origins, capturing new membrane into the cup, and crucially, that cups close when domain expansion stalls. We show that cups can close in two ways: either at the lip, by inwardly directed actin polymerization, or the base, by stretching and delamination of the membrane. This provides the basis for a conceptual mechanism whereby closure is brought about by a combination of stalled cup expansion, continued actin polymerization at the lip, and membrane tension. We test this through the use of a biophysical model, which can recapitulate both forms of cup closure and explain how 3D cup structures evolve over time to mediate engulfment

    The distribution of Dishevelled in convergently extending mesoderm

    Get PDF
    Convergent extension (CE) is a conserved morphogenetic movement that drives axial lengthening of the primary body axis and depends on the planar cell polarity (PCP) pathway. In Drosophila epithelia, a polarised subcellular accumulation of PCP core components, such as Dishevelled (Dvl) protein, is associated with PCP function. Dvl has long been thought to accumulate in the mediolateral protrusions in Xenopus chordamesoderm cells undergoing CE. Here we present a quantitative analysis of Dvl intracellular localisation in Xenopus chordamesoderm cells. We find that, surprisingly, accumulations previously observed at mediolateral protrusions of chordamesodermal cells are not protrusion-specific but reflect yolk-free cytoplasm and are quantitatively matched by the distribution of the cytoplasm-filling lineage marker dextran. However, separating cell cortex-associated from bulk Dvl signal reveals a statistical enrichment of Dvl in notochord–somite boundary-(NSB)-directed protrusions, which is dependent upon NSB proximity. Dvl puncta were also observed, but only upon elevated overexpression. These puncta showed no statistically significant spatial bias, in contrast to the strongly posteriorly-enriched GFP-Dvl puncta previously reported in zebrafish. We propose that Dvl distribution is more subtle and dynamic than previously appreciated and that in vertebrate mesoderm it reflects processes other than protrusion as such

    3D time series analysis of cell shape using Laplacian approaches

    Get PDF
    Background: Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results: We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions: The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations

    Image based validation of dynamical models for cell reorientation

    Get PDF
    A key feature of directed cell movement is the ability of cells to reorient quickly in response to changes in the direction of an extracellular stimulus. Mathematical models have suggested quite different regulatory mechanisms to explain reorientation, raising the question of how we can validate these models in a rigorous way. In this study, we fit three reaction-diffusion models to experimental data of Dictyostelium amoebae reorienting in response to alternating gradients of mechanical shear flow. The experimental readouts we use to fit are spatio-temporal distributions of a fluorescent reporter for cortical F-actin labeling the cell front. Experiments performed under different conditions are fitted simultaneously to challenge the models with different types of cellular dynamics. Although the model proposed by Otsuji is unable to provide a satisfactory fit, those suggested by Meinhardt and Levchenko fit equally well. Further, we show that reduction of the three-variable Meinhardt model to a two-variable model also provides an excellent fit, but has the advantage of all parameters being uniquely identifiable. Our work demonstrates that model selection and identifiability analysis, commonly applied to temporal dynamics problems in systems biology, can be a powerful tool when extended to spatio-temporal imaging data. © 2014 The Authors. Published by Wiley Periodicals, Inc
    corecore